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Abstract - This paper presents a neural network for solving non-linear minimax multiobjective fractional programming problem subject to 
nonlinear inequality constraints. Neural model is designed for optimization with constraints condition. Methodology is based on the lagrange 
multiplier with saddle point optimization. 
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1. Introduction 
Optimization problems arise in a wide variety of scientific 

and engineering applications including signal processing, 

system identification, filter design, function approximation, 

regression analysis and so on.  

Here, we perform a rigorous analysis of a neural 

network for solving non-linear fractional programming 

problems and present a saddle point optimality theory for 

the minimax fractional programming problem. Various 

numerical procedures have been presented over decades for 

solving linear and nonlinear optimization problems. Tank 

and Hop field [5] in 1986 first proposed a neural network for 

linear programming. 

 Kennedy and Chua [20,21] extended and improved 

the tank and Hopfield  network by using penalty method for 

solving nonlinear programming problem. Variety of attempts 

to avoid using penalty parameters have been made. 

Radriguez – Vazquez et al.[22] proposed a switched – 

capacitor neural network for solving a class of constrained  

non-linear convex optimization problems. Neural network 

models for optimization problem have been investigated 

intensively since the pioneer work of Hop field see [18,6,2,4] , 

for the eigen value problem, Xia [24] gave a promising neural 

network model which was proved to have global 

convergence with respect to the problems feasible set. Xia 

and Wang [8] gave a general neural network model 

designing methodology which put together way gradient 

based network models for solving the convex programming 

problems with globally convergent stability . Neural network 

for quadratic and nonlinear optimization with interval 

constraints were developed by Bouzerdorm, pattison [23] 

and Liang, Wang [3] and others [1],[10]-[17]. All there neural 

networks can be classified into the following three types: 

(1) The gradient- based models 

(2) The penalty function based models 

(3) The projection based models 

Nonlinear fractional programming does not belong 

to convex optimization problems and how to construct a 

good performance neural network model to solve this 

optimization problem becomes a challenge now since. 

 Fractional programming is a nonlinear 

programming method that has known increasing exposure 

recently and its importance in solving concrete problems is 

steadily increasing. Also non-linear optimization models 

describe practical problems much better than the linear 

optimization does. The fractional programming problems are 

particularly useful in the solution of economic problems in 

which various activities use certain resources in various 

proportions while the objective is to optimize a certain 

indicator, usually the most favorable return – on – allocation 

ratio subject to the constraint imposed on the availability of 

goods. Pal & Gupta [9] 2008 presented a Goal programming 

approach for solving interval valued multi objective 

fractional programming problems using Genetic Algorithm. 

Zhang & Feng [7] developed Neuro dynamic analysis for a 

class of nonlinear fractional programming. Wen and Wu [15] 

solved a continuous- time linear fractional programming 

problems by using the parametric method Neural circuit 

design techniques and related characteristics analysis is now 

becoming a typically challenging undertaking. Motivated by 

this idea, this paper is organized as follows. 

 In this section 2, we formulate the multi objecting 

non-linear fractional programming problem and its duality. 

In section 3, some illustrative examples are presented. In 

section 4, Neural model is primarily designed for 

optimization with constraints condition. The methodology is 

based on the lagrange multiplier with saddle point which 

satisfies the optimality and conclusion part in section 5 are 

cited. 

 

Section -2 : We consider the following problems: 

 (P) 
piXx  1

maxmin  (fi (x) | hi (x) ) 

 Subject to   nRXxxg  ,0  

where fi  , hi , i = 1,2,…p are real valued functions defined on 

X, each hi is strictly positive and g = (g1, g2 ……gm ) , where 

each gj is a real valued function defined on x. 
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 To develop the optimality conditions, consider the 

following auxiliary problem:  

(Pe) 
piXx  1

maxmin     xhexf ii   

Subject to   nRXxxg  ,0  

Le (x,u) = 
pi1

max  (fi (x) – e hi (x))  



m

j
jj xgu

1

 for fixed real 

number e and for all .mRuandXx   

The lagrangian dual of (P) is defined as follows: 
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For  a fixed e and for each mRuXx  &  

 

Definition 1: If there exists 0, ***  uRuXx m  such that 

    **** ,,),( uxLeuxLeuxLe   

for all Xx and for all  ** ,,0, uxthenuRu m   is called a 

saddle point of problem (Pe). 

 

Definition 2:  A pair   mRuXxwithux  **** ,,  is said to 

satisfy the optimality conditions for the problem (pe) if and 

only if the following four conditions are satisfied 

(a) x* minimizes Le (x, u*) 

(b) u* g (x*) = 0 

(c) g (x*) 0  

(d) 0* u  

 

Definition 3: A point  mRu *  is said to be an optimal 

multiplier of problem (Pe) if and only if there exists an Xx *  

such that  ** , ux  satisfies optimality condition of definition 

2. 

 

Main Results: 

 If   ** , ux  satisfies the optimality conditions for (Pe) 

with    *

1

* /max xhxfe iii
pi 

 , then 

  ** , ux also satisfies the optimality conditions for (P) 

Result 1: 

For any 

      

    xhxf

xguxhiexfuxLeXxUu

ii
pi

m

j
jji

piXxXx

/max

maxinf),(inf,,

1

11


















 

 

Proof:  For any XxUu  ,  

Xx
inf Le (x, u) =       













 


m

j
jjii

piXx
xguxhexf

11
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11
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    xehxf ii
pi

/max
1 

  since 0)( xg j  and 0ju  for all j. 

       iallforxhxhxf iii
pi

0,/max
1




 

Hence the conclusion follows: 

 

Result 2 : If u* is an optimal multiplier for (Pe)  then for every 

optimal solution x* of (Pe) ,  ** , ux  satisfies the optimality 

conditions for (Pe) . 

Proof : Since u* is an optimal multiplier for (Pe), there 

exists  Xx  such that it satisfies 

 (i) minimizes of Le (x0 , u*) 

(ii)   00* xgu  

(iii)   00 xg  

(iv) 0* u  

From (ii) , (iii) and (iv) conditions it follows that 

jxgu  ,0)( 0*  

Now for fixed e, 

  ) (x) -eh (xf *
i

*
i

pi1
max  

   (x)) -eh (xf i
*

i
piXx 


1
maxinf  

    00

1
max xehxf ii

pi



 

       



m

j
jjii

pi
xguxehxf

1

0*00

1
max  

 =    ***0 ,, uxLuxLe   

 =       



m

j
jjii

pi
xguxhexf

1

****

1
.max  

     **

1
max xhexf ii

pi



 

Since    0,0 **  uxg , it follows that  ** , uxLe  

  XxuxLe  *,  

Hence  ** , ux  satisfies the optimality conditions for (Pe). 

 

Result 3 : A pair  ** , ux  satisfies the optimality conditions 

(i) to (iv) of definition 2 if and only if it satisfies the following 

conditions 

(i) x* is an optimal solution (Pe)  

(ii) u* is an optimal solution of D 

(iii) )))  e hi (x(fi (x **

pi1
max =  (x, u*)f Lein

Xx

 

 Proof: Now  ** , ux  satisfies the optimality conditions of (i) 

to (iv) of definition – 2. Then for any   0,0, *  xguuRu m  

 Le         



m

j
jjii

pi
xguxhexfux

1

***

1

* max,  for all 

fixed e 

     **

1
max xhexf ii

pi



, since   0* xgu  

       



m

j
jjii

pi
xguxhexf

1

****

1
max  

 =  ** , uxLe  (1) 

From optimality conditions, 
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    *** ,, uxLeuxLe  Xx  (2) 

Hence from equation (1) and (2) it follows that 

     **** ,,, uxLeuxLeuxLe   

This implies that  ** , ux  is a saddle point. 

Since  ** , ux  is a saddle point of Le  *, ux , 

then  ** , ux  is an optimal solution of )( eP . This proves the 

result-3 conditions (i). To establish conditions (ii), 
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piXxXx
xguxehxfuxLe

1

*

1
)()()(maxinf,inf  

  *,inf uxLe
Xx

  

 *u is an optimal solution of (D). 

 This establishes the proof for (ii). 

 To prove (iii), we consider from equation (2) that 

    *** ,inf, uxLeuxLe
Xx

  

or,   



m

j
jjii

pi
xguxehxf

1

****

1
)()()(max  

  *,inf uxLe
Xx

  

Since, ,,...2,10)( ** mjxgu jj   

    ***

1
,inf)()(max uxLexehxf

Xx
ii

pi 
  

To prove for converse part, we consider that it satisfies the 

conditions from (i) to (iii). 

Then, 
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piXx
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1
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1
)()()(maxinf  

   



m
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pi
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1

***

1
)()()(max  

    ***

1
,inf)()(max uxLexehxf

Xx
ii

pi 
  

Hence all the relations are equal. 

   0)(,minimizes ****  xguanduxLex  

The optimamality  conditions (iii) and (iv) follow form the 

feasibility of  ** uandx  

 

Result  4 : The following statements are equivalent 

 (a)  ** , ux  is a saddle point of Le (x , u) 

 (b) Conditions of Result – 2 hold 

 (c) Condition (i) to (iv) of definition -2 hold. 

We observe that (a)   (b)   (c)   (a) 

 

Result 5: Suppose that (P) has an optimal solution  

 **
ePthatandx  is stable where     **

1

* /max xhxfe ii
pi

  

Thus (D) has an optimal solution and the optimal values of 

(P) and (D) are equal. 

 

Section – 3: 

Definition 4 : A feasible solution  ePofx*  is said to be an 

efficient solution of (Pe) if there does not exist any feasible 

solution x of (Pe) such that 

     piforxehxfxehxf iiii ...2,1)()()()( **   & for 

fixed e. 

and    )()()()( ** xehxfxehxf jjii   

   for some j and for fixed e 

If *x  is an efficient solution of (Pe) then *x  is an efficient 

solution of (P) 

 

Definition 5: A feasible solution *x  of  eP  is said to be 

properly efficient solution of  eP  if it is an efficient solution 

of  eP  and there exists a scalar M > 0 such that for some i and 

for some feasible x, 

   ),()()()( ** xehxfxhexf iiii   

 
   

      **

**

)()(

)()()()(

xehxfxhexfM

xhexfxehxf

jjjj

iiii




 for some j  

such that 

    )()()()( ** xehxfxhexf iiij   

If  *x  is an properly efficient solution of  eP  then  *x  is 

an properly efficient  solution (P). 

Example : 
       xehxfxehxfF

x
p 2211 ),()(min   

 subject to 2,1,0)(  jxg j  

 and  2,2Xx  

xxfxxf  3)(1)( 2
2

1  

2)(2)( 2
2

1  xxhxxh  

xxgxxg  )(1)( 2
2

1  

The feasible region is  1,0 . Let us take  1,01* x  and e=1 

for fixed real number. 

 
   

011)32()21(
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22
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Now we can prove that 1x  is a properly efficient solution 

of )( pF . 
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Section 4: Neural Model 

 The neurons in the network can be classified into 

two classes: variable neurons x and Lagrangian neurons , 

with regard to their role in searching for the solution. 

 In the dynamic process of the neural network, 

Lagrangian neurons lead the trajectory intot the feasible 

region while variable neurons decrease the Lagrangian 

function L(x,). The decrease of the Lagrangian function x 

can be verified from the fact that along the trajectory of the 

network 

 

















n
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i
n

i

i

itcons dt

dx

dt

dx

x

xL

dt

xdL

1

2

1tan

0
),(),( 



. 

Let f,h,g be pseudoconvex functions. Hence 
h

f
 is 

pseudoconvex i.e. )()( xehxf ii   is pseudoconvex. 

 Since, g is pseudoconvex and 0y  that implies 

  )()()( xgyxhexf t
ii  is pseudoconvex. 

 Also    0)()()()( ****  xgyxhexfxx t
ii

t , this 

satisfies variational Inequality problem over 0 . 

 Hence the new projection neural network model is 

     ***** ()()(
0

xxgyxhexfxP t
ii    

where,  hxdxX n  | , 

 xP n
x :  is a projection operator and 

 0)(|0  xgx n  is closed convex. 

 

Section 5: 

Conclusion: The paper proposes a new projection neural 

network model and theoretically guaranteed to solve 

variational inequality problems. The multiobjective minimax 

nonlinear fractional programming is defined and its 

optimality is derived by using its Lagrangian duality. The 

equilibrium points of the proposed neural network model are 

found to correspond to the Karush Kuhn Trcker point 

associated with the nonlinear fractional programming 

problem. 
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